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Abstract
Electron transport through a parallel double quantum dot is theoretically studied
in the Kondo regime with the use of the non-equilibrium Green function
formalism based on the equation of motion method. An influence of inter-dot
tunnel coupling t and channel mixing effects on the orbital (spinless) Kondo
phenomenon is analysed in the linear and nonlinear transport regimes. Both
effects lead to a considerable suppression of the conductance in the Kondo
regime. In a system with dots capacitively coupled (t = 0) the differential
conductance shows a zero-bias peak whose intensity diminishes gradually with
mixing effects included. When tunnel coupling between dots is taken into
account (t �= 0) the orbital Kondo resonance splits and the intensities of both
components are strongly influenced by channel mixing. The linear conductance
calculated as a function of a dot level position E0 is strongly suppressed in the
Kondo regime but at higher values of E0 a relatively well-pronounced side peak
appears whose intensity increases with the coupling rate t . We consider the side
peak maximum as originated from interference processes in the system.

1. Introduction

Electronic transport through a double quantum dot (DQD) system has attracted much
research interest in recent years due to the possibility of using such systems in quantum
computation [1, 2]. At low temperatures, a DQD reveals a broad variety of transport regimes,
such as the Kondo effect in dots strongly coupled to external leads [3–6], Fano resonance [4, 7]
or Aharonov–Bohm oscillations [8, 9]. Fano resonance arises from quantum interferences
between two different paths accessible for electrons during tunnelling through the system, and
it has been observed in a variety of experiments [4, 7, 10] as well as having been studied
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theoretically by means of various techniques [11, 12]. The interplay between Fano and Kondo
resonances has also been investigated [13–15]. A strong suppression of the conductance in the
Kondo regime due to destructive interference processes was obtained [13, 16].

The ordinary Kondo phenomenon manifests itself in a considerable enhancement of the
linear and nonlinear conductance and arises from spin fluctuations [17]. The observation
of the spin Kondo effect in an artificial quantum dot molecule was reported by Jeong et al
[18]. A splitting of the Kondo resonance due to an energy difference between two molecular
states formed by the coherent superposition of the Kondo effects of each dot was obtained.
The splitting was also predicted by theoretical studies performed for two dots in a series in
a limit of strong inter-dot coupling t [19, 20]. On the other hand, in a system with weak
coupling the Kondo resonance is formed between each dot and the corresponding lead, and
no splitting of the anomaly was observed [19, 21]. The competition between the Kondo effect
and antiferromagnetic coupling generated via exchange or via capacitive coupling between two
dots has also been studied [19, 22].

The existence of a degenerate ground state is a fundamental element of a system for
the Kondo effect to develop. Most commonly, the phenomenon arises from a two-fold spin
degeneracy, but in a general case the spin degree of freedom can be replaced by any, two-valued,
quantum number. Moreover, systems with N-degenerated ground states can exhibit various
Kondo effects depending on the allowed transitions between the degenerated states [23]. An
interplay between orbital and spin degrees of freedom can lead to the Kondo phenomenon
with SU(4) symmetry. Such a highly symmetric Kondo effect was observed in carbon
nanotubes [24] as well as in vertical semiconductor QDs [25]. Nanotubes show an intrinsic
orbital degeneracy which corresponds to two ways in which electrons can circle around the
graphene cylinder, namely clockwise or counterclockwise. In the case of vertical QDs, orbitals
correspond to two degenerate Fock–Darwin states with different values of angular momentum
quantum number. Theoretical approaches to SU(4) Kondo physics were undertaken by several
authors and a variety of techniques was employed [26–35]. It is worth mentioning that the
Kondo temperature of the SU(4) effect T SU(4)

K is in general at least one order of magnitude
higher than in the case of the common spin Kondo effect in QDs [31]. A transition from
SU(4) to SU(2) Kondo effect due to symmetry breaking (e.g. by orbital anisotropy) has also
been discussed in relation to carbon nanotubes [32] or DQD structures [33]. Recently, the
observation of a purely orbital (spinless) Kondo anomaly in a carbon nanotube QD has been
reported [36]. The effect can be observed in an external magnetic field when orbital level-
crossing is attained.

The orbital Kondo resonance was observed for the first time by Wilhelm et al in a DQD
system with each dot connected to a separate set of external electrodes and no tunnelling
between dots [37]. Two degenerate states of the DQD then play the role of pseudo-spin with
up and down pseudo-spins related to an extra electron in dot 1 (up) or an extra electron in dot 2
(down). When each dot is coupled to a separate set of reservoirs, processes in which an electron
tunnels from dot 1 to the corresponding electrode while another electron simultaneously tunnels
onto dot 2 lead to the orbital Kondo effect.

Experimental investigations of the pseudo-spin Kondo anomaly in DQDs coupled in
parallel as well as a theoretical analysis of the problem were performed by Holleitner et al
[38]. A competition between the Kondo phenomenon and molecular states was studied. As
the tunnelling coupling between dots lifts the orbital degeneracy the Kondo peak is split and
the anomaly is suppressed considerably for greater values of t [38]. The behaviour is similar
to a suppression of the spin Kondo effect under external magnetic field [39, 40]. A finite bias
singlet–triplet Kondo phenomenon in a carbon nanotube QD was experimentally investigated
by Paaske et al, and a considerable splitting with highly asymmetric peaks was observed in the
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Figure 1. The schematic diagram of the system.

differential conductance [41]. A model based on a two-orbital Anderson impurity occupied by
two electrons allowed the authors to describe the results obtained.

The orbital Kondo effect in DQD structures in parallel configuration with two dots
capacitively coupled has been studied theoretically [42, 43]. Transport through DQDs
connected in series has also been analysed [44]. In this last case the geometry ensures
that each dot is coupled to its own separate electrode and the orbital quantum number is
conserved. However, in parallel geometry some cross-coupling effects could take place and
the conservation of orbital quantum number would be violated, so a suppression of the orbital
Kondo phenomenon can be expected [33, 45].

In the present approach we analyse in detail the influence of channel mixing effects as
well as inter-dot tunnelling coupling on the linear and nonlinear transport in the Kondo regime.
Only the orbital Kondo effect induced by inter-dot Coulomb correlations is discussed. In the
presence of strong inter-dot Coulomb repulsion one electron can be accumulated in the DQD
system and fluctuations of pseudo-spin corresponding to states with an extra electron in dot 1 or
dot 2 will lead to the orbital Kondo anomaly. Calculations performed in [32] show that channel
mixing effects practically do not influence the spin Kondo phenomenon. As the inter-dot tunnel
coupling is very weak, much weaker than coupling to the leads, one can expect that under such
circumstances the spin Kondo anomaly will not be disturbed considerably. In particular, no
splitting of the spin Kondo resonance was predicted for two QDs in the serial configuration
with weak inter-dot coupling [19, 21], and a well-defined zero-bias Kondo anomaly was found
in the differential conductance [21]. Therefore, in the present study, limited to a weak inter-dot
coupling regime, we do not take into account spin degrees of freedom, and we focus only on
the orbital Kondo effect. The non-equilibrium Green function technique based on the equation
of motion (EOM) method is employed. A schematic diagram of the system consisting of two
equivalent single-level quantum dots coupled to external reservoirs is presented in figure 1.
When each dot is attached to a separate set of electrodes with no mixing between two channels
the orbital quantum number is conserved during tunnelling processes and the orbital Kondo
effect occurs. With channel mixing included an electron can tunnel coherently from one dot
via the reservoirs to another dot. The maximal cross coupling is achieved if the quantum
dots are attached to a single common lead, and this corresponds to the parallel arrangement
of the dots. It is worth mentioning that the case with a finite amount of mixing to some
extent relates to a quantum dot coupled to ferromagnetic leads with non-collinear magnetization
directions [32, 46–48].

2. Model and Green function formalism

The two-impurity Anderson model is used to describe the system under consideration. The
Hamiltonian can be written as
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H = HL + HR + HDQD + HT . (1)

Here Hβ with β = L, R is the Hamiltonian for non-interacting electrons in the left (β = L)
and the right (β = R) leads and is given by Hβ = ∑

k εkβa+
kβakβ . Here a+

kβ(akβ) denotes the
creation (annihilation) operator of an electron of momentum k and single-particle energy εkβ in
the lead β .

The term HDQD describes the two-dot region and is taken in the form

HDQD =
∑

i=1,2

Ei d
+
i di + t (d+

1 d2 + d+
2 d1) + Ud+

1 d1d+
2 d2 (2)

where Ei corresponds to the energy level of dot i , d+
i (di) denotes the creation (annihilation)

operator of an electron in the dot i and t is the coupling between dots. The last term in
Hamiltonian (2) describes the inter-dot Coulomb interaction between electrons. In this work
we consider only empty or singly occupied states in each quantum dot and neglect in the
Hamiltonian the term describing on-site Coulomb correlations.

The term HT in equation (1) corresponds to the coupling between the double quantum dot
region and the electrodes, and it is written as

HT =
∑

k,i=1,2
β=L ,R

(Tkβi a
+
kβdi + T ∗

kβi d
+
i akβ) (3)

with Tkβi describing tunnelling of an electron from the dot i to the electrode β .
The current flowing through the system from the lead β is determined by the formula

derived by Meir [49]:

I β = i
2e

h̄
Tr

∫
dε

2π
�̂β(ε){Ĝ<(ε) + fβ(ε)[Ĝr(ε)−Ĝa(ε)]} (4)

where fβ(ε) denotes the Fermi–Dirac distribution function for the lead β , and Ĝr and Ĝa

stand for the Fourier transforms of retarded and advanced Green functions (GFs), whereas
Ĝ< represents the lesser one. The appropriate matrices are determined in a two-dimensional
pseudo-spin space. Terms �

β

ii ′ (i, i ′ = 1, 2) describe tunnelling rates and are defined by
�

β

i i ′ (ε) = 2π
∑

k Tkβi T ∗
kβi ′δ(ε − εkβ). In the present approach the �

β

ii ′ (ε) are assumed to
be independent of energy, constant within the electron band and zero otherwise. Non-
diagonal elements �

β

i−i describe mixing effects between two orbital channels. The mixing

is characterized by the parameter α = �
β

i−i/�
β

ii . α = 0 corresponds to the case with no cross-
coupling effects present in the system, whereas for α = 1 both dots are coupled to common
reservoirs and maximal mixing takes place.

In order to find retarded and advanced GFs the equation of motion method is employed.
The method generates higher-order functions, which can be calculated only approximately.
Considering temperatures comparable to the Kondo temperature we decouple high-order GFs
using the procedure proposed by Meir [49]. The approach allows one to describe the Kondo
effect in a proper way in this temperature region [50]. After these approximations are
introduced and in the limit of infinite U we can write the GF in the following matrix form
which corresponds to the Dyson equation (for details of calculations see the appendix)

Ĝ(ε) = [ĝ(ε)−1 − �̂(ε)]−1 (5)

with gii ′ = δii ′(ε − Ei )
−1 describing the GF of the uncoupled double quantum dot in the

absence of any interaction. The term �̂(ε) denotes the self-energy of interacting system and is
given by

�̂(ε) = ĝ(ε)−1 − ˆ̃n−1
ĝ(ε)−1 + ˆ̃n−1

(�̂0 + ˆ̃
�(ε) + T̂ ) (6)
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where �̂0 describes the self-energy of the non-interacting system, Tii ′ = δi−i ′ t, ñii = 1 −
〈d+

−i d−i〉, ñi−i = 〈d+
−i di 〉 and

�̃i i (ε) =
∑

k,β

∣
∣Tkβ−i

∣
∣2

ε − εkβ
fβ(εkβ) +

∑

k,β

2t2
(∣
∣Tkβi

∣
∣2 + ∣

∣Tkβ−i

∣
∣2

)

(ε − εkβ)[(ε − εkβ)2 − 4t2] fβ(εkβ)

−
∑

k,β

2tT ∗
kβi Tkβ−i

(ε − εkβ)2 − 4t2
fβ(εkβ) (7)

�̃i−i (ε) = −
∑

k,β

T ∗
kβi Tkβ−i

ε − εkβ
fβ(εkβ) +

∑

k,β

t
(∣
∣Tkβi

∣
∣2 + ∣

∣Tkβ−i

∣
∣2

)

(ε − εkβ)2 − 4t2
fβ(εkβ)

−
∑

k,β

4t2T ∗
kβi Tkβ−i

(ε − εkβ)[(ε − εkβ)2 − 4t2] fβ(εkβ). (8)

Advanced Ĝa and retarded Ĝr = (Ĝa)† functions are found with the use of Dyson
equation (5), whereas the lesser one Ĝ< is determined from the Keldysh formula Ĝ< =
Ĝr�̂<Ĝa with the self-energy �̂< calculated applying the Ng ansatz [17]: �̂< = �̂<

0 �̂−1�̂ef

where �̂<
0 = i(�̂L fL + �̂R fR), �̂ = �̂L + �̂R = i(�̂r

0 − �̂a
0) and �̂ef = i(�̂r − �̂a). The

knowledge of G< allows one to determine the electric current flowing through the system
(equation (4)) as well as mean values 〈d+

i di ′ 〉 = −i
∫

dε
2π

G<
i ′i which are calculated self-

consistently. The linear conductance G in the limit of a weak bias voltage (at equilibrium)
is given by G = 2e2

h

∫
dεT (ε)(− ∂ f

∂ε
), where the total transmission is equal to T (ε) =

1
2 Tr[�̂LĜr ˆ̃�

R
Ĝa + �̂RĜr ˆ̃�

L
Ĝa] with ˆ̃

�
β

= �̂β �̂−1�̂eff (for more details see [12]).

3. Results and discussion

For simplicity we assume that energy levels of both dots are aligned with E1 = E2 = E0. To
take into account mixing effects between two channels the parameter α is introduced which
changes from 0, with no cross-coupling effects included, to 1, which corresponds to maximal
mixing when two QDs are coupled to common left and right reservoirs. As the situation for
α �= 0 is to some extent analogous to systems with ferromagnetic electrodes of non-collinear
magnetizations where during tunnelling processes the electron spin rotates about a definite
angle ϑ [32, 46, 48] it is reasonable to express diagonal and non-diagonal tunnelling rates in
the following form: �

β

ii = �β/(1 + α) and �
β

i−i = �βα/(1 + α). Couplings to the leads are
then normalized and they are proportional to cos2 ϑ = 1/(1 + α) and sin2 ϑ = α/(1 + α),
respectively. �, which represents here the dot–lead coupling strength, is taken as the energy
unit. Calculations are performed for strongly correlated systems in the limit of infinite U . The
band width in electrodes is assumed to be equal to 500�.

The density of states (DOS) calculated for α = 0 is plotted in figure 2. As both dots are
identical the spectral density is presented for one dot only. In the absence of cross-coupling
effects (α = 0) the orbital pseudo-spin is conserved during tunnelling processes and for t = 0
two dots are capacitively coupled. Accordingly, a well-defined peak pinned to the Fermi level
of the leads (EF = 0 for eV = 0) can be observed. The intensity, as well as the width of the
peak, strongly depends on the temperature (figure 2(a)), so the peak shows features typical of
the Kondo anomaly. When the coupling between dots is introduced the Kondo peak splits into
two components centred at ε = ± 2t . In this case electron transport takes place through two
molecular states split by 2t . After applying a bias voltage to the system an additional splitting
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Figure 2. Local densities of states in the Kondo regime (E0 = −4�) for α = 0 and indicated
values of temperature kT (left panel, eV = 0) and bias voltage eV (right panel, kT = 0.01�),
�L = �R = �.

of each Kondo anomaly appears and the components are pinned at Fermi levels of the left and
right electrodes which differ by eV (figures 2(d)–(f)).

The differential conductance Gdiff = dI/dV calculated for α = 0 and several values of
inter-dot tunnelling rate t is depicted in figure 3. For the system with symmetric couplings to
electrodes �L = �R = � and energy levels of both dots aligned the results are fully symmetric
with respect to the bias reversal as presented in figure 3(a). When dots are capacitively coupled
(t = 0) a pronounced peak appears in a zero bias regime, which is good evidence for the
Kondo anomaly in the system. Inter-dot tunnelling effects lead to strong modifications of the
conductance curves. With increase of t the Kondo peak at first decreases and then splits into
two components centred at eV = ± 2t . The intensities of the components decrease strongly for
higher values of t . The behaviour of the orbital Kondo anomaly obtained here is very similar to
the one typical of the spin Kondo phenomenon in the presence of an external field [39, 40]. The
result is also qualitatively consistent with experimental data [38]. When coupling strengths to
both electrodes are considerably different (�L �= �R) the intensity of the peak corresponding
to t = 0 is strongly reduced in comparison to the symmetrical case (figure 3(b)). As
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Figure 3. Bias dependence of differential conductance for indicated values of t . The relevant
parameters are as follows: E0 = −4�,α = 0 and kT = 0.01�; (a) symmetric case with
�L = �R = �, (b) �L

11 = �L
22 = 1.75� and �R

11 = �R
22 = 0.25�.

Figure 4. Density of states and transmission for different cross-coupling parameters α and
kT = 0.01�, E0 = −4�, �L = �R = �, (left panel: t = −0.1� and right panel: t = 0.1�).

inter-dot coupling is introduced, the anomaly becomes split and the intensities of both
components are additionally lowered. Moreover, the conductance curves reveal some
asymmetry which is more pronounced for higher coupling rates. It can be mentioned that
similar asymmetry in the differential conductance was observed experimentally, but for a
double occupied carbon nanotube QD [41].

Consider now the channel mixing effects and their influence on the Kondo phenomenon.
The spectral density (DOS) and the transmission T (ε) are depicted in figure 4 for two values
of tunnelling rate t and different cross-coupling parameters α. When α = 0 the DOS exhibits
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Figure 5. The linear conductance as a function of cross-coupling parameter α for indicated values
of inter-dot coupling t . The other parameters are kT = 0.01�, E0 = −4�,�L = �R = �.

two well-defined Kondo peaks centred at ε = ± 2t and the curves are identical for t = 0.1�

and −0.1�. With mixing effects included they start to differ considerably. The intensity of the
peak centred at ε = −2t (for positive and negative values of t) increases with increase of α and
the peak becomes strongly asymmetric. Just after the peak the DOS sharply decreases and at
higher values of α it is considerably suppressed. At the same time the intensity of the second
component corresponding to ε = 2t decreases and finally the resonance disappears. Due to
these modifications the spectral functions corresponding to attractive (t < 0) and repulsive
(t > 0) inter-dot coupling differ considerably.

Mixing effects strongly influence the transmission function T (ε), which is also displayed
in figure 4 ((c) and (d)). As the conservation of pseudo-spin is broken, transmission is
suppressed for higher values of α. The intensity of both Kondo components present in T (ε)

decreases and they disappear as α approaches 1 with maximal mixing of both channels. In
such a situation tunnelling electrons lose information about their pseudo-spin orientation, and
the orbital Kondo effect vanishes.

The tendency to suppress the Kondo anomaly due to channel mixing as well as due to inter-
dot coupling can be also seen in the linear and differential conductance. The linear spectra in the
Kondo regime as functions of the mixing parameter α are presented in figure 5 for several values
of t . The conductance decreases monotonically as α changes from 0 to 1, and cross-coupling
effects become important. Suppression of the conductance is much more pronounced when
inter-dot tunnelling processes are included. In such a case the splitting additionally destroys
the Kondo effect. A similar conclusion can be drawn by analysing the differential conductance.
The appropriate curves calculated in the Kondo regime for several values of hopping rate t and
different values of α are presented in figure 6. The zero-bias maximum can be easily seen for
the case of uncoupled dots (t = 0). The intensity of the Kondo peak gradually decreases as
mixing effects are included and the anomaly is suppressed in the presence of strong channel
mixing (α ≈ 1). For t �= 0, splitting of the main peak originating from the inter-dot coupling
is obtained. The intensities of these components decrease strongly as mixing effects become
important. For high values of α the calculated curves are flat with only some remnants of the
Kondo anomaly.

Next, the linear conductance as a function of a dot level position E0 tuned by a gate voltage
is investigated. Spectra calculated for various values of α are plotted in figure 7. For α = 0 and
a small inter-dot coupling (t = 0.02�) the main peak appears in the Kondo regime. It should

8
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Figure 6. Bias dependence of differential conductance for different values of hopping rate t and
cross-coupling parameter α, kT = 0.01�, E0 = −4�,�L = �R = �.

Figure 7. The linear conductance as a function of dot level position E0 for indicated values of
α, t = 0.02� and kT = 0.01�,�L = �R = �.

be pointed out that the present approach corresponds to relatively high temperatures, namely
close to the Kondo one. It is a consequence of the decoupling procedure of higher-order GFs
used in the EOM [49, 51]. Accordingly, the unitary limit or a wide plateau, which are typical
features of the zero-temperature Kondo phenomenon, cannot be achieved within the framework
of the approach. However, the obtained results constitute a good qualitative picture appropriate
for non-zero temperatures [50].

The results presented in figure 7 well confirm the conclusion that channel mixing effects
destroy the Kondo anomaly and lead to the suppression of the conductance in the Kondo

9
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Figure 8. The linear conductance as a function of dot level position E0 for indicated values of
coupling between two dots t . The other parameters are α = 0.6, kT = 0.01� and �L = �R = �.

regime. However, at intermediate values of α and non-vanishing coupling between two dots
(t �= 0) interference effects take place which lead to a relatively small but well-pronounced
side peak. This side-band maximum disappears as α approaches 1 with two dots attached to
common reservoirs, which corresponds to the parallel configuration. For intermediate values
of α the intensity, as well as the position of the side peak, strongly depends on the inter-dot
tunnelling rate, which is well illustrated in figure 8. With increase of t the side peak is much
more pronounced and it is shifted towards energies closer to the Fermi level. At the same time
the position of the main wide maximum remains practically unchanged.

Analysis of the spectral density curves calculated for dot level in the Kondo regime as well
as for E0 corresponding to side maxima in G appearing at different values of the coupling rate
t allows one to understand the results (figure 9). In the Kondo regime sharp peaks centred at
ε = −2t can be seen, but the DOS due to level splitting and channel mixing effects is strongly
suppressed near the Fermi energy EF (figure 9(a)), and therefore the current is blocked in a
low-bias regime. When the dot level E0 is shifted towards higher energies the appropriate peak
is also moved and it crosses the Fermi level leading to the side maximum in the conductance
spectrum. For greater t the crossing takes place at higher energy, E0. All these effects explain
the behaviour of the conductance presented in figure 8 well.

The differential conductance calculated for E0 corresponding to the side maximum for
t = 0.1� and α = 0.6 is displayed in figure 10. One can see that a round but well-
pronounced zero-bias peak is obtained instead of two low-intensity components present in Gdiff

corresponding to the Kondo regime (see figure 6(b)).

4. Summary and conclusions

We have studied electron transport through the parallel DQD system and analysed the influence
of channel mixing effects on the orbital Kondo phenomenon. In consistency with other
theoretical approaches [32, 33] we find that cross-couplings present in the system strongly
influence the effect, leading to a suppression of the Kondo resonance. The present work
provides a detailed analysis of the effect in the linear and nonlinear transport regimes, whereas
the previous ones were mainly limited to equilibrium situation. If dots are capacitively
coupled (t = 0) a zero-bias well-pronounced Kondo peak can be observed in the differential

10



J. Phys.: Condens. Matter 19 (2007) 256205 D Sztenkiel and R Świrkowicz

Figure 9. Density of states for indicated values of t and α = 0.6, kT = 0.01�, �L = �R = �.
The curves are calculated for a dot level in the Kondo regime (a: E0 = −4�) as well as for E0

corresponding to side maxima in G appearing at different values of coupling rate t (b: E0 = −2.8�),
(c: E0 = −2.2�), (d: E0 = −1.9�).

Figure 10. Bias dependence of differential conductance for E0 = −2.2�, t = 0.1�, α = 0.6,
kT = 0.01� and �L = �R = �.

conductance for α = 0 (no mixing present). With increase of α the peak intensity gradually
diminishes, and finally, the resonance disappears when α is equal to 1. For high values of
α the linear conductance is considerably suppressed in the Kondo regime. Direct tunnel
coupling between dots also leads to a suppression of the Kondo anomaly due to a splitting
of the resonance peak. The result is consistent with experimental data and theoretical analysis
performed by Holleitner et al [38]. Moreover, the present studies reveal that in a DQD system
with inter-dot coupling and channel mixing effects taken into account interference processes
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can influence the conductance spectra, leading to a well-pronounced side peak. The intensity
of the peak increases with the coupling rate t . At the same time its position shifts towards
higher energies, whereas a strong suppression of the conductance in the Kondo regime can be
observed.

Appendix

We present here details of calculations based on the equation of motion method which allow
one to obtain the Dyson equation for the GF used in section 2. Writing equations of motion for
G11(ε) = 〈〈d1, d+

1 〉〉 and G21(ε) = 〈〈d2, d+
1 〉〉, one finds

(ε − E1 − �011)G11 = 1 + U〈〈d1d+
2 d2, d+

1 〉〉 + (t + �012)G21 (A.1a)

(ε − E2 − �022)G21 = U〈〈d2d+
1 d1, d+

1 〉〉 + (t + �021)G11 (A.1b)

where the term �0i j = ∑
kβ T ∗

kβi Tkβ j /(ε − εkβ) describes the self-energy of a non-interacting
system. Applying the EOM to the two new GFs that appear on the right-hand side of
equations (A.1a) and (A.1b), one gets

(ε − E1 − U)〈〈d1d+
2 d2, d+

1 〉〉 = n2 + t〈〈d2d+
1 d1, d+

1 〉〉 +
∑

k,β

{
T ∗

kβ1〈〈akβd+
2 d2, d+

1 〉〉

− T ∗
kβ2〈〈akβ d+

2 d1, d+
1 〉〉 + Tkβ2〈〈a+

kβ d1d2, d+
1 〉〉} (A.2a)

(ε − E2 − U)〈〈d2d+
1 d1, d+

1 〉〉 = −〈d+
1 d2〉 + t〈〈d1d+

2 d2, d+
1 〉〉 +

∑

k,β

{
T ∗

kβ2〈〈akβd+
1 d1, d+

1 〉〉

− T ∗
kβ1〈〈akβ d+

1 d2, d+
1 〉〉 + Tkβ1〈〈a+

kβ d2d1, d+
1 〉〉} (A.2b)

where ni = 〈d+
i di 〉 describes the mean number of electrons in the dot i = 1, 2. In the above

equations new GFs 〈〈akβd+
2 d2, d+

1 〉〉, 〈〈akβ d+
2 d1, d+

1 〉〉, 〈〈a+
kβ d1d2, d+

1 〉〉, 〈〈akβ d+
1 d1, d+

1 〉〉,
〈〈akβ d+

1 d2, d+
1 〉〉 appear. For example the EOM for 〈〈akβ d+

2 d1, d+
1 〉〉 is written as

(ε − εkβ − E1 + E2)〈〈akβ d+
2 d1, d+

1 〉 = −〈d+
2 akβ〉 + t〈〈akβ d+

2 d2, d+
1 〉〉

− t〈〈akβ d+
1 d1, d+

1 〉〉 − Tkβ2〈〈d1d+
2 d2, d+

1 〉〉 +
∑

p

Tpβ2〈〈a+
pβakβd1, d+

1 〉〉. (A.3)

Now, the decoupling scheme proposed by Meir [49] is applied to the higher-order GFs.
According to the procedure, functions which contain two lead operators are decoupled as
follows:

〈〈a+
pβakβd1, d+

1 〉〉 = 〈a+
pβakβ 〉〈〈d1, d+

1 〉〉 = δpk fβ(εkβ)〈〈d1, d+
1 〉〉 (A.4)

whereas mean values of the type 〈d+
i akβ 〉 are neglected [51]. Then, equation (A.3) takes the

form

(ε − εkβ − E1 + E2)〈〈akβ d+
2 d1, d+

1 〉〉 = t〈〈akβ d+
2 d2, d+

1 〉〉 − t〈〈akβ d+
1 d1, d+

1 〉〉
− Tkβ2〈〈d1d+

2 d2, d+
1 〉〉 + Tkβ2 fβ(εkβ)〈〈d1, d+

1 〉〉. (A.5)

It is worth mentioning that no approximation or decoupling is made for the higher-order GFs
that correspond only to the dots. Writing equations for other GFs which contain only one lead
operator and applying the similar decoupling procedure, one finds

(ε − εkβ)〈〈akβd+
2 d2, d+

1 〉〉 = t〈〈akβ d+
2 d1, d+

1 〉〉 − t〈〈akβ d+
1 d2, d+

1 〉〉 + Tkβ1〈〈d1d+
2 d2, d+

1 〉〉
+ Tkβ2 fβ(εkβ)〈〈d2, d+

1 〉〉 (A.6)

(ε − εkβ + E1 − E2)〈〈akβ d+
1 d2, d+

1 〉〉 = t〈〈akβ d+
1 d1, d+

1 〉〉 − t〈〈akβ d+
2 d2, d+

1 〉〉
− Tkβ1〈〈d2d+

1 d1, d+
1 〉〉 + Tkβ1 fβ(εkβ)〈〈d2, d+

1 〉〉 (A.7)
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(ε − εkβ)〈〈akβd+
1 d1, d+

1 〉〉 = t〈〈akβ d+
1 d2, d+

1 〉〉 − t〈〈akβ d+
2 d1, d+

1 〉〉 + Tkβ2〈〈d2d+
1 d1, d+

1 〉〉
+ Tkβ1 fβ(εkβ)〈〈d1, d+

1 〉〉 (A.8)

(ε + εkβ − E1 − E2 − U)〈〈a+
kβd1d2, d+

1 〉〉 = −T ∗
kβ1〈〈d2d+

1 d1, d+
1 〉〉 + T ∗

kβ1 fβ(εkβ)〈〈d2, d+
1 〉〉

− T ∗
kβ2 fβ(εkβ)〈〈d1, d+

1 〉〉 + T ∗
kβ2〈〈d1d+

2 d2, d+
1 〉〉. (A.9)

A closed set of equations (A.5)– (A.9) is then obtained which can be easily solved. Next the
solutions are substituted into equation (A2), which leads to a set of two linear equations:

A〈〈d1d+
2 d2, d+

1 〉〉 − t̃〈〈d2d+
1 d1, d+

1 〉〉 = 〈n2〉 − �M
2 〈〈d1, d+

1 〉〉 − �P 〈〈d2, d+
1 〉〉 (A.10)

−t̃〈〈d1d+
2 d2, d+

1 〉〉 + B〈〈d2d+
1 d1, d+

1 〉〉 = −〈d+
1 d2〉 − �M

1 〈〈d2, d+
1 〉〉 − �P 〈〈d1, d+

1 〉〉 (A.11)

which allow one to express the second-order functions 〈〈d1d+
2 d2, d+

1 〉〉, 〈〈d2d+
1 d1, d+

1 〉〉 in
terms of 〈〈d1, d+

1 〉〉 and 〈〈d2, d+
1 〉〉. To simplify the notation, we define

A = ε − E1 − U − �011 − �
c(0)

11 − �
e(0)

22 − �
d(0)

22 + �
a(0)

12 + �
a(0)

21

B = ε − E2 − U − �022 − �
c(0)
22 − �

f (0)

11 − �
d(0)
11 + �

b(0)
12 + �

b(0)
21

t̃ = t + �
a(0)

22 + �
b(0)

11 − �
c(0)

12 − �
c(0)

21 − �
d(0)

21

�M
1 = �

c(1)
22 + �

f (1)

11 + �
d(1)
11 − �

b(1)
12 − �

b(1)
21

�M
2 = �

c(1)

11 + �
e(1)

22 + �
d(1)

22 − �
a(1)

12 − �
a(1)

21

�P = �
a(1)
22 + �

b(1)
11 − �

d(1)
21 − �

g(1)

21 − �
c(1)
12 − �

c(1)
21

where the self-energies are defined as

�
a(n)
i j =

∑

k,β

T ∗
kβi Tkβ j

t (ε − εkβ + E1 − E2)

d
F (n)

β (εkβ)

�
b(n)
i j =

∑

k,β

T ∗
kβi Tkβ j

t (ε − εkβ − E1 + E2)

d
F (n)

β (εkβ)

�
c(n)
i j =

∑

k,β

T ∗
kβi Tkβ j

2t2

d
F (n)

β (εkβ)

�
d(n)
i j =

∑

k,β

T ∗
kβi Tkβ j

ε + εkβ − E1 − E2 − U
F (n)

β (εkβ)

�
e(n)

i j =
∑

k,β

T ∗
kβi Tkβ j

(ε − εkβ)(ε − εkβ + E1 − E2) − 2t2

d
F (n)

β (εkβ)

�
f (n)

i j =
∑

k,β

T ∗
kβi Tkβ j

(ε − εkβ)(ε − εkβ − E1 + E2) − 2t2

d
F (n)

β (εkβ)

�
g(1)

i j =
∑

k,β

T ∗
kβi Tkβ j

ε − εkβ
fβ(εkβ)

with d = (ε − εkβ)[(ε − εkβ + E1 − E2)(ε − εkβ − E1 + E2) − 4t2], F (1)
β (εkβ) = fβ(εkβ)

and F (0)
β (εkβ) = 1.

Finally, GFs Gi j = 〈〈di , d+
j 〉〉 are calculated in the limit of infinite U and they are

written in the matrix form which corresponds to the Dyson equation (equation (5) in the text):
Ĝ(ε) = [ Î − ĝ(ε)�̂(ε)]−1ĝ(ε), where ĝ(ε) is the GF of the DQD region in the absence of any
coupling or interaction and �̂ describes the appropriate self-energy. Explicit forms of these
matrices are given in the text for equal level positions E1 = E2 = E0.
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[40] Rosch A, Paaske J, Kroha J and Wolfle P 2003 Phys. Rev. Lett. 90 076804
[41] Paaske J, Rosch A, Wolfle P, Mason N, Marcus C M and Nygard J 2006 Nat. Phys. 2 460
[42] Pohjola T, Schoeller H and Schon G 2001 Europhys. Lett. 54 241
[43] Lipinski S and Krychowski D 2005 Phys. Status Solidi b 243 206
[44] Sun Q-f and Guo H 2002 Phys. Rev. B 66 155308
[45] Holleitner A W, Blick R H, Huettel A K, Eberl K and Kotthaus J P 2002 Science 297 70
[46] Kashcheyevs V, Schiller A, Aharony A and Entin-Wohlman O 2007 Phys. Rev. B 75 115313
[47] Simon P, Cornaglia P S, Feinberg D and Balseiro C A 2007 Phys. Rev. B 75 045310
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